Further Pieri-type formulas for the nonsymmetric Macdonald polynomial

نویسنده

  • W. Baratta
چکیده

The branching coefficients in the expansion of the elementary symmetric function multiplied by a symmetric Macdonald polynomial Pκ(z) are known explicitly. These formulas generalise the known r = 1 case of the Pieri-type formulas for the nonsymmetric Macdonald polynomials Eη(z). In this paper, we extend beyond the case r = 1 for the nonsymmetric Macdonald polynomials, giving the full generalisation of the Pieri-type formulas for symmetric Macdonald polynomials. The decomposition also allows the evaluation of the generalised binomial coefficients ( η ν ) q,t associated with the nonsymmetric Macdonald polynomials.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pieri-Type Formulas for the Nonsymmetric Macdonald Polynomials

In symmetric Macdonald polynomial theory the Pieri formula gives the branching coefficients for the product of the rth elementary symmetric function er(z) and the Macdonald polynomial Pκ (z). In this paper we give the nonsymmetric analogues for the cases r = 1 and r = n − 1. We do this by first deducing the the decomposition for the product of any nonsymmetric Macdonald polynomial Eη (z) with z...

متن کامل

4 M ay 2 00 9 An ( inverse ) Pieri formula for Macdonald polynomials of type C Michel

We give an explicit Pieri formula for Macdonald polynomials attached to the root system Cn (with equal multiplicities). By inversion we obtain an explicit expansion for two-row Macdonald polynomials of type C.

متن کامل

Nonsymmetric Macdonald Polynomials and Matrix Coefficients for Unramified Principal Series Representations

We show how a certain limit of the nonsymmetric Macdonald polynomials appears in the representation theory of semisimple groups over p–adic fields as matrix coefficients for the unramified principal series representations. The result is the nonsymmetric counterpart of a classical result relating the same limit of the symmetric Macdonald polynomials to zonal spherical functions on groups of p–ad...

متن کامل

Nonsymmetric Macdonald Polynomials and Matrix Coefficients for Unramified Principal Series

We show how a certain limit of the nonsymmetric Macdonald polynomials appears in the representation theory of semisimple groups over p–adic fields as matrix coefficients for the unramified principal series representations. The result is the nonsymmetric counterpart of a classical result relating the same limit of the symmetric Macdonald polynomials to zonal spherical functions on groups of p–ad...

متن کامل

NONSYMMETRIC INTERPOLATION MACDONALD POLYNOMIALS AND gln BASIC HYPERGEOMETRIC SERIES

The Knop–Sahi interpolation Macdonald polynomials are inhomogeneous and nonsymmetric generalisations of the well-known Macdonald polynomials. In this paper we apply the interpolation Macdonald polynomials to study a new type of basic hypergeometric series of type gln. Our main results include a new q-binomial theorem, new q-Gauss sum, and several transformation formulae for gln series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012